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Abstract 
In this paper we present initial results from our attempts at quantifying the effects of 
space on human encounter.  Our premise is that distinct locations across a city shape 
and form people's behaviour and encounters.  By recording and analysing individual’s 
visiting behaviour and encounters, we can contribute to quantifying our understanding of 
space and its effect on people.   

We were able to record individual visiting patterns by using Bluetooth technology, which 
is embedded in many mobile handsets.  Each phone, if configured appropriately, beams 
out a unique serial number using Bluetooth, typically within a 10-meter range.  
Recording this unique serial number, in conjunction with the date and time, can be used 
as an indicator of when someone visited a specific location. 

To analyse our data we look for patterns of co-presence over time.  We are interested in 
identifying patterns in the way people encounter each other at each of the four locations 
of our study. In our analysis we were able to correlate data features from four distinct 
locations.  Our analysis can be used to explain how the different locations provide 
different opportunities for encounter. 

Introduction 
Our society regenerates through people’s movement and encounter 
(Hillier & Hanson, 1984). A vibrant and sustainable environment gives 
us the opportunity to meet new people, make new friends. Walking 
down the street or visiting a pub are opportunities for such encounters. 
Space syntax maintains that people’s movement, and subsequently 
encounters with others, is affected by the structure of space (Hillier & 
Hanson, 1984; Hillier et al., 1987). Demonstrating a relationship 
between structure and movement has been achieved with some 
success (Hillier et al., 1993), yet a relationship between spatial 
structure and people’s encounters has not been demonstrated at the 
individual granularity. 

Although movement, at the aggregate level, is relatively easy to 
measure (e.g. using gatecounts), the same is not true of encounters. 
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Before the advent of mobile technology it was extremely difficult, if not 
impossible, to measure and record a large number of individuals’ 
encounters with others in the course of everyday life. In this paper we 
describe how we made use of Bluetooth technology, typically found in 
mobile devices, to record people’s visiting patters and encounters in 
space. We then show how this data can be analysed to give us insight 
into the nature of people’s encounter and the effect of space on 
encounter. 

Setup 
In our study we made use of Bluetooth technology typically found in 
mobile devices. Bluetooth technology has a characteristic that renders 
it appropriate for study by methods derived from those of space 
syntax. In contrast to the wireless signals emitted by typically static 
WiFi access points, the signals emitted by Bluetooth devices map very 
closely to the movements of people around the city, which in turn are 
a primary concern of space syntax.   

Our basic setup, replicated across 4 sites, involved installing a 
computer that constantly recorded the number of Bluetooth devices 
within a 10-meter range. This data allows us to correlate pedestrian 
movements with Bluetooth device movements, providing baseline 
data about the penetration of Bluetooth into city life.  In previous work, 
we found that approximately 7.5% of observed pedestrians had 
discoverable Bluetooth devices (O’Neill et al., 2006).  This number 
most certainly varies between different cities, but still it shows that a 
considerable portion of the public can be recorded using our method.  
Beyond simply counting the appearance of Bluetooth devices, we 
used this method to uncover interesting data on patterns of presence 
of Bluetooth devices and Bluetooth device names (O’Neill et al., 2006), 
as well as patterns of encounter, described in this paper. 

In our study we considered four locations, which we shall refer to as  

• campus 

• street 

• pub  

• office 

The first two locations are outdoor pedestrian streets, one on our 
campus and one in the city of Bath, which connect open spaces and 
can be considered as gates.  The latter two are indoor locations where 
visitors typically spend some time in them.  The pub is open to anyone 
over the age of 18, while the office is a secure location where only 
employees and their visitors have access. 

Although the first two locations would be considered as gates in the 
Space Syntax term, the nature of Bluetooth technology mitigates 
against this. The 10-meter range of our Bluetooth scanner reached 
beyond walls, and in adjacent offices. Effectively, if our scanner 
picked up a Bluetooth device, there is no way of knowing if that device 
was on the street, or in any of the offices. Despite this, on aggregate 
level we still get quite distinctive patterns of data between the first two 
and last two locations, as we describe in the next sections. This is 
because the great majority of devices our scanners picked up was 
indeed on the street (for the first two locations).  

Across the four locations we captured 6 months of data, with 
approximately 10000 unique devices. In the following section we 
describe in detail the data we captured and the analyses we carried 
out.
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Data & Analysis 
The method we used to scan for Bluetooth devices generates discrete 
data about the presence of devices in the environment. A visualisation 
of our data, which we have termed timeline, can be seen in Figure 1. 
Here, each dot represents a discovery event, i.e. a point in time (x-
axis) when our Bluetooth scanner picked up a specific device in the 
environment.  By applying filters, we can see that, for example, device 
16 was present in the environment between approximately 18.5 
minutes and 19.5 minutes. 

 

 

 

 

 

 

 

 

To study the patterns of co-presence in our data, we first need to 
identify instances where two or more devices were present at the 
same place and the same time. For example, in Figure 1 we see that 
devices 12 and 13 encountered each other. We developed filters that 
analysed our data and gave us instances of devices encountering 
each other at each of the four locations in our study. These initial 
results took the form of records: 

device1_id, device2_id, location 

At this stage in our analysis we had a long list of such records, 
describing which devices encountered each other and in which 
location. For example, in Figure 1 we see that devices 12 and 13 
encountered each other at 15.5 minutes and were together for 
approximately 1 minute. This list of encounters is a textual 
representation of the patterns of encounter across our four locations. 
To further study the patterns and structure hidden within this list, we 
transformed it to four social network graphs, one for each location. 
Assuming that each device from our dataset becomes a node in the 
social graph, then the list of encounters indicates which nodes are 
connected. Proceeding in this manner, we generated four social 
network graphs, one for each location. 

For illustration purposes, in Figure 2 we show the graph from the pub 
location in our study. In this graph, each device is represented as a 
node in the graph, and connected nodes indicate that these devices 
encountered each other at some point.  We see that most devices are 
linked to the main core, whilst some devices are islands. The latter 
indicates cases where a device was seen only by itself and never in 
the presence of others. Additionally, the size of nodes represents the 
total amount of time that a device has spend in this location, while the 
colour of the nodes (blue to red) indicates the betweeness of a node 
(from 0 to 1 respectively). 

One of our initial observations was that due to the sheer number of 
nodes in the graphs, the visualisations themselves helped little in 
analysing our data because of the visual clutter. However, by 
transforming our data into graph form, we were able to run a number 
of well-established analysis algorithms using existing software (e.g. 
Pajek, Ucinet).  Specifically, we analysed each of our four graphs in 
terms of; 

Figure 1: 

A timeline visualization of our 
Bluetooth gatecounts.  Each 
device is given its own 
timeline (dashed lines) and 
each discovery event is 
plotted as a circle on the 
timeline 
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• Degree centrality, calculated as the number of neighbours of each 
node. 

• Closeness centrality (access), calculated for any given node as the 
number of nodes (minus 1) divided by the sum of all distances 
between the node and every other node. 

• Betweeness centrality (control), calculated for any given node as 
the proportion of shortest paths between all pairs of nodes that 
include this node. 

• Distance, calculated as the probability that the shortest path 
between a random pair of nodes will be 1, 2, 3, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The degree and closeness centrality are measures of the reachability 
of a node within a network, and describe how easily information can 
reach a node. Betweeness centrality indicates the importance of a 
node, and the extent to which it is needed as a link in the chains of 
contacts that facilitate the spread of information within the network. 
We should also note that closeness centrality is referred to as 
“integration” in Space Syntax literature, while betweeness centrality is 
known as “choice”. 

Quantifying Encounter 
To gain an overview of the structural properties of the graphs 
representing encounter, we calculated the metrics shown in Table 1. 
For each of our locations we calculated the number of unique devices 
that were recorded by our Bluetooth scanner, the size of the largest 
core in the encounter graphs, the number of edges in the largest core, 
the density of the largest core as well as the size of the 2nd largest 
core. We also calculated some generic centrality measures for each of 
the largest cores: network degree, closeness and betweeness 

Figure 2: 

A graph visualization of the 
encounters that we recorded 
at one of the locations in our 
study 
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centralisation. Finally, we measured the maximum and average 
degree of each graphs, the longest shortest-path distance in each of 
the graphs, as well as the average shortest-path distance. 

 
 Campus Street Pub Office 

Unique devices 1162 8450 4175 329 
Largest core 1028 2738 4036 318 
2nd largest core size 2 4 2 1 
Edges in largest core 6434 5060 23919 2419 
Density 0.5% 0.007% 1.4% 2.2% 

Network Degree Centralisation 0.43 0.51 0.68 0.73 
Network Closeness Centralisation 0.49 0.55 0.66 0.65 
Network Betweeness Centralisation 0.36 0.65 0.57 0.27 

Max degree 454 1394 2758 246 
Average degree 12.26 3.70 11.85 15.21 
Max distance (diameter) 6 10 9 4 
Average distance 2.72 2.96 2.44 2.04 

In addition to the above metrics, for each of degree, closeness and 
betweeness centrality measures we generated ranked log-log plots. 
To do this we attached a value (degree, closeness or betweeness) to 
each node in the graphs (only the core), and then sorted this list in 
descending order. We then plotted the sorted lists, resulting in three 
sets of graphs (degree, closeness, betweeness) for each of our four 
gates. Additionally, we generated a fourth set of graphs, based on the 
probable distance between any randomly selected pair of nodes. 
These graphs are shown in Figures 3 to 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: 

Metrics for each of our four 
graphs 

Figure 3: 

Ranked log-log plots of 
degree for each of our four 
locations 

Figure 4: 

Ranked log-log plots of 
closeness for each of our 
four locations 
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Discussion 
In our work we set out to measure and quantify the effect of space on 
encounter. In the previous sections we described our setup, consisting 
of installing computers that carry out constant Bluetooth scans. We 
then analysed the captured data to identify instances of co-presence, 
and thus encounter, within the four locations of our study. These 
instances of encounter were used to generate social graphs of the 
community in each of the four locations. 

We focus our discussion on the various properties of the social graphs 
that we listed in Table 1 and in Figures 3 to 6. The way we captured 
and analysed our data prohibits us from directly identifying the effect 
of space on encounters and social networks. However, by comparing 
the properties the social graphs across our four locations we can 
begin to draw a picture of the communities that inhabit those locations. 
Also, it is important to keep in mind that in our observations of the four 
locations the only parameter we changed was the location itself: the 
hardware, software and algorithms we used to derive our results are 
identical for all locations. Although it can be argued that our data are 
affected by a number of further variables, we consider those as part of 
the location and the environment. 

A notable feature of the graphs is their size. As we expected, the city 
street had the most “visitors”, followed by the pub, the campus and the 
office. This is quite representative of the populations inhibiting each of 
the locations, since the street is open to everyone, thus likely to get 
lots of distinct visitors. The pub is also open to everyone (over 18) and 
again has a large population of potential visitors. The campus, on the 

Figure 5: 

Ranked log-log plots of 
betweeness for each of our 
four locations 

Figure 6: 

Probability plots of shortest 
path distance for each of our 
four locations 
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other hand, is mostly visited by students and staff, which amount to 
about 15,000 students and staff (while the population of Bath is about 
86,000). Finally, the office is a secure area where only employees 
have access, thus a small population of potential visitors. 

It is interesting to note, however, that the social network of the street 
consists of about 2/3 islands, with the core consisting of about 1/3 of 
the devices. Looking at Table 1 we see that the campus has a much 
higher density than the street. This indicates that there are more static 
devices on the campus, such as computers or employees phones, 
which are likely to act as hubs which connect to the core those single 
devices that go past in the environment. This is something we can 
verify from Figure 3, where we see the street graph has a few well 
connected hubs but then falls quite sharply, as opposed to the 
campus where there are many more nodes with degree between 100 
and 5. 

It is interesting to note that both locations where the public can go, the 
street and the pub, have quite large max-degree (1394 and 2758); yet 
average degree is much smaller on the street than the pub (3.70 and 
11.85). In fact, in Figure 3 we see that the pub completely outperforms 
the street in terms of degree. This is due to the fact that most people 
in the pub are co-present, thus they get linked together. In other words, 
a visit in the pub can give someone much more opportunity for 
copresence than a visit in the street. This is something we expect, as 
it is the primary purpose of a pub. Also, we should note that in the pub 
there are certain devices with extremely high degrees, which we 
believe are attributed to members of staff or regular customers. These 
act as central hubs that bring together all the customers of the pub 
into the central core of the social graph. The same is true in the office, 
where a number of devices have a relatively high degree, indicating 
that these people come in frequent contact with others. 

In general, across the four locations the “tightness” of the communities 
varies. Specifically, the office and the pub have shorter average 
distances between their members (2.04 and 2.44 in Table 1 
respectively), and we also see in Figure 6 that the probability curves 
of these two locations are shifted to the left. This is further enhanced 
by the relatively high density of the pub and the office, which indicates 
more interactions between the members of the community. 

Another interesting point to note is that although the pub has quite a 
tight and dense population, it has large diameter (9), which is also true 
of the street (10). Yet, the pub has a smaller average distance (2.44) 
as opposed to the street (2.96). Coupled with the density measures, 
we can describe the pub’s network as a large central core, while the 
street’s network more closely resembles a small core with a number of 
branches and additionally a large number of islands.  

Considering the network centralisation measures we can make more 
inferences about the overall structure of the social networks. These 
measures range from 0 to 1 and indicate a similarity to a perfect 
linear-shaped network (0) or to a perfect star-shaped network (1). This 
is calculated for each of degree (DC), closeness (CC) and 
betweeness (BC). 

The office scores high on DC and CC indicating that some nodes can 
be reached more easily than others, yet BC is low, indicating that all 
nodes are more or less equally important in terms control and 
communication. The opposite is true of the pub, where high DC and 
CC are coupled with high BC. This indicates that there are certain 
nodes in the pub that act as hubs of communication and control (most 
likely the members of staff or regular customers). 
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Comparing the campus and street in terms of centralisation measures 
also yields interesting insights. Both have similar levels of DC and CC, 
but the campus has low BC while the street has high BC. This 
indicates that on the street there are a few important nodes, while on 
campus the nodes are more equal.  

Finally, we turn our attention to the graphs shown in Figures 3 to 6. 
We have found that these are much more useful than a visualisation 
of the social networks themselves. A really interesting observation is 
that although in each of the 4 graphs the lines have similar shape, the 
subtle differences are crucial pointers as to the effect of space on 
encounter. For instance, the variation in how sharply the values fall is 
a useful indicator, along with the overall steepness of the graphs. 

When considering the whole range of values, degree graphs are 
overall more close to a power law distribution. Closeness graphs have 
short sharp tails, with a body that approximates a power law extremely 
well. Similarly, betweeness graphs have long sharp tails, while their 
body approximates a power law. The distance probability graphs can 
be approximated by a Poisson distribution.  

The graphs we found in analysing our Bluetooth data, point to power-
law distributions (γ≈0.6-1.1 for degree, γ≈1.2-1.4 for betweenness, 
γ≈0.1 for closeness) that are characteristic of scale-free, or self-similar 
networks. Such networks imply infinite variance, and usually in such 
networks there are a few nodes with extremely large number of links. 
Barabási et al. (1999a) have dubbed such networks ‘scale-free’, by 
analogy with fractals, phase transitions and other situations where 
power laws arise and no single characteristic scale can be defined. 
These characteristics can be found in kinship networks, physical and 
biological systems, and economic systems. 

Scale-free networks have stimulated a great deal of theorizing. The 
earliest work is due to Simon (1955), independently rediscovered by 
Barabási et al. (1999a; 1999b). They show that scale-free networks 
emerge automatically from a stochastic growth model in which new 
nodes are added continuously and attach themselves preferentially to 
existing nodes, with probability proportional to the degree of the target 
node. Effectively, the richly connected nodes get richer. 

We believe that our scanners recorded a phenomenon and process 
which is quite similar to the “rich getting richer” model, and which 
explains the presence of power laws in our data. In terms of 
encounters, those people who have more links and encounters are 
the ones who are present more in the environment. When a new 
person comes along, chances are that they are going to encounter the 
regular customers or the employees. Thus, they share an encounter 
with an already well-connected person in the graph. It is this exact 
process that has been shown to result in power-law distributions.   

Conclusion and Ongoing Work 
In this paper we describe our attempts to measure and quantify the 
effect that space has on people’s encounters, and ultimately their 
behaviour. We present a study where four distinct locations were 
chosen for installing Bluetooth scanners that monitor the presence, 
and thus encounter, of people in those spaces. Our scanners 
generated a very rich data set that we used to derive social graphs for 
each of the four locations. 

In our analysis we focused on the derived social graphs, and were 
able to compare various well-established properties and 
measurements of social graphs across the four locations. We found 
that the graphs exhibit power-law distributions when plotting their 
properties in rank-ordered graphs. These are characteristic of scale-
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free networks that can be found in kinship networks, physical and 
biological systems, and economic systems. 

As part of our ongoing work we are interested in exploring further our 
data sets. For example, we are interested in experimenting with 
different rules for generating the social graphs from the Bluetooth data. 
Also, we are in the process of running emulations of our data to 
explore ways in which information is diffused and spreads across the 
social networks.  
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